Study and evaluation of the experimental performance of polymer membranes for oily industrial wastewater treatment

Study and evaluation of the experimental performance of polymer membranes for oily industrial wastewater treatment

Abolfazl Naghipour1

1) Master s student in Chemical Engineering, Department of Separation Processes, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.

Publication : 7th International Conference on Applied Researches in Science & Engineering (7carse.com)
Abstract :
Polymeric membranes lead the membrane separation industry market because they are very competitive in performance and economics. Many polymers are available, but the choice of membrane polymer is not a trivial task. A polymer has to have appropriate characteristics for the intended application.The polymer sometimes has to offer a low binding affinity for separated molecules (as in the case of biotechnology applications), and has to withstand the harsh cleaning conditions. It has to be compatible with chosen membrane fabrication technology. The polymer has to be a suitable membrane former in terms of its chains rigidity, chain interactions, stereoregularity, and polarity of its functional groups. The polymers can range form amorphous and semicrystalline structures (can also have different glass transition temperatures), affecting the membrane performance characteristics. The polymer has to be obtainable and reasonably priced to comply with the low cost criteria of membrane separation process. Many membrane polymers are grafted, custom-modified, or produced as copolymers to improve their properties. The most common polymers in membrane synthesis are cellulose acetate, Nitrocellulose, and cellulose esters (CA, CN, and CE), polysulfone (PS), polyether sulfone(PES), polyacrilonitrile (PAN), polyamide, polyimide, polyethylene and polypropylene (PE and PP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylchloride (PVC). The compounds found in industrial wastewater typically show high toxicity, and in this way, they have become a primary environmental concern. Several techniques have been applied in industrial effluent remediation. In spite of the efforts, these techniques are yet to be ineffective to treat oily wastewater before it can be discharged safely to the environment. Membrane technology is an attractive approach to treat oily wastewater. This is dedicated to the immobilisation of TiO2 nanoparticles on poly(vinylidene fluoride–trifluoro ethylene) (PVDF-TrFE) porous matrix by solvent casting. Membranes with interconnected pores with an average diameter of 60 µm and a contact angle of 97°, decorated with TiO2 nanoparticles, are obtained.
Keywords : oil–water separation; polymeric membrane; cellulose acetate; Nylon 66; permeability